Constraints on the origin of slab and mantle wedge anomalies in Tonga from the ratio of <i>S</i> to <i>P</i> velocities
نویسندگان
چکیده
We examine two prominent upper mantle velocity anomalies in the southwest Pacific, the Tonga slab anomaly and the corresponding ov. erlying mantle wedge anomaly, using data collected during a combined land-sea deployment of temporary seismometers. The linear geometry and small interstation spacing of the instruments yield high-resolution data along a cross section of the Tonga subduction zone, including the actively spreading Lau back arc basin. We estimate the relative variation of P and S velocity, often described as v = 51nVs/SlnVp, for the slab and mantle wedge anomalies using two distinct methods: a linear regression of the P and $ travel time residuals, and detailed modeling of the velocity structure using a three-dimensional finite difference travel time algorithm. The two methods yield similar results, with v of the slab being 1.1-1.5 and v of the mantle wedge being 1.2-1.3. These values are consistent with experimental data concerning the effect of temperature on P and $ wave velocities in the upper mantle and are lower than what is expected for velocity anomalies generated by the presence of partial melt. These observations imply that either the theoretical estimates of v for partial melt are too large or very little partial melt is present beneath the Lau basin. In the latter case, melt must be quickly removed from the rock matrix, such that the velocity anomalies are due to increased temperature, and not melt. The bulk of the velocity anomaly in the mantle wedge can be explained by temperature anomalies of 400-600øC because of the amplification of temperature derivatives of seismic velocity by anelastic effects. Such large thermal anomalies, generated by decreased lithospheric thickness and mantle upwelling beneath the fast spreading Lau back arc basin, can still leave the mantle near the solidus, even after accounting for tile effect of increased volatile content in the mantle wedge. The lower-amplitude velocity reductions in the deeper wedge are likely related to an increased concentration of volatiles from the subducting slab.
منابع مشابه
سازوکار شکلگیری باتولیت گرانیتوئیدی زاهدان، جنوبشرق ایران
Ellipsoidal huge granitoidic batholiths of Zahedan, with NW-SE trending, located in south of this city which is intruded in low metamorphosed Eocene flysches (eastern Iran flysch zone). This batholith has two compositional terms: an extensive intermediate-acid term includes diorite - granodiorite with igneous source (I- type origin) and a low extent crustal and hybrid origin acidic term (H-type...
متن کاملSeismological Constraints on Structure and Flow Patterns Within the Mantle Wedge
The mantle wedge of a subduction zone is characterized by low seismic velocities and high attenuation, indicative of temperatures approaching the solidus and the possible presence of melt and volatiles. Tomographic images show a low velocity region above the slab extending from 150 km depth up to the volcanic front. The low velocities result at least partially from volatiles fluxed off the slab...
متن کاملGeochemical and isotopic (Nd and Sr) constraints on elucidating the origin of intrusions from northwest Saveh, Central Iran
Three intrusive granitoid bodies from northwest Saveh, central Iran, are embedded in volcanic sedimentary rocks of the Eocene,forming isolated small outcrops: Khalkhab quartz monzodioritic units (SiO2: ~52-57 wt %) to the northwest, Neshveh granodioriticunits (SiO2: ~62-71 wt %) to the northeast, and Selijerd granodioritic units (SiO2: ~63-69 wt %) to the southeast. The Khalkhab unit iscomposed...
متن کاملژئوشیمی رادیو ایزوتوپهای Rb–Sr و Sm–Nd و پتروژنز تودههای نفوذی مرتبط با کانیسازی مس پورفیری غنی از طلای منطقه اکتشافی ماهرآباد (شمال هنیچ)، شرق ایران
The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineraliza...
متن کاملConstraints on Subduction Geodynamics from Seismic Anisotropy
[1] Much progress has been made over the past several decades in delineating the structure of subducting slabs, but several key aspects of their dynamics remain poorly constrained. Major unsolved problems in subduction geodynamics include those related to mantle wedge viscosity and rheology, slab hydration and dehydration, mechanical coupling between slabs and the ambient mantle, the geometry o...
متن کامل